

Electroweak Physics at the Tevatron

Ashutosh Kotwal Duke University

Outline

Goals of Tevatron Electroweak Physics program

Status of Run 2 and Preliminary Run 2 Results

Future Outlook

W and Z Production

Clean W and Z production signatures:

W: Isolated, high pt lepton with missing transverse momentum

Z: two isolated leptons

Typically **small** hadronic recoil

Electroweak Physics Roadmap

Tevatron Run 2

Main Injector and Tevatron delivering luminosity at1.96 TeV

Upgraded CDF and D0 Detectors

Upgraded Muon systems, readout and trigger electronics

D0: new Solenoid, Fiber Tracker, Silicon Detector

CDF: new Central Drift Chamber, Silicon Detector and Plug Calorimetry

W and Z Cross Sections

- Establish baseline measurements for understanding detectors
- Very useful as luminosity monitor, can be used to normalize other hard-scattering cross sections

$$\sigma.B(W \to ev) =$$

$$2.64 \pm 0.01_{stat} \pm 0.09_{sys} \pm 0.16_{lum} nb$$

$$(Run 1: 2.49 \pm 0.02_{stat} \pm 0.08_{sys} \pm 0.09_{lum} nb)$$

W and Z Cross Sections

Background-subtracted data (~42/pb)
 distributions in good agreement with simulation

$$\sigma.B(W \to ev) = 3054 \pm 100_{stat} \pm 86_{sys} \pm 305_{lum} \ pb (Run 1:2310 \pm 10_{stat} \pm 50_{sys} \pm 100_{lum} \ pb)$$

$$\sigma.B(Z \rightarrow ee) =$$

$$294 \pm 11_{stat} \pm 8_{sys} \pm 29_{lum} \ pb$$

$$(Run \ 1:221 \pm 3_{stat} \pm 4_{sys} \pm 10_{lum} \ pb)$$

W Cross Sections

 Dominant uncertainties: luminosity, acceptance (PDFs, detector modelling) and efficiency (for muon channel)

$$\sigma.B(W \to \mu \nu) = 2.64 \pm 0.02_{stat} \pm 0.12_{sys} \pm 0.16_{lum} nb$$

$$(Run 1: 2.21 \pm 0.22 nb)$$

W and Z Cross Sections

• 7352±154 $W \rightarrow \mu \nu$ candidates in 17.3/pb of data 1585 $Z \rightarrow \mu \mu$ candidates in 31.8/pb of data

$$\sigma.B(Z \to \mu\mu) =$$

$$264 \pm 7_{stat} \pm 17_{sys} \pm 26_{lum} \ pb$$

$$(Run \ 1:178 \pm 22_{stat} \pm 21_{sys} \pm 9_{lum} \ pb)$$

DØ Run 2 Preliminary

$$\sigma.B(W \to \mu \nu) = \\ 3.226 \pm 0.128_{stat} \pm 0.100_{sys} \pm 0.323_{lum} \ nb \\ (Run \ 1: 2.09 \pm 0.06_{stat} \pm 0.22_{sys} \pm 0.1 \ lum \ nb)$$

Z Cross Sections

- Backgrounds < 1%
- Forward coverage will extend acceptance

$$\sigma.B(Z \to \mu\mu) = 246 \pm 6_{stat} \pm 12_{sys} \pm 15_{lum} \ pb$$

$$(Run \ 1:233 \pm 18 \ pb)$$

$$\sigma.B(Z \to ee) = 267 \pm 6_{stat} \pm 15_{sys} \pm 16_{lum} \ pb$$

$$(Run \ 1:231 \pm 6_{stat} \pm 7_{sys} \pm 8_{lum} \ pb)$$

T Universality

 $\sigma.B(W \to \tau \nu) =$ $2.62 \pm 0.07_{stat} \pm 0.21_{sys} \pm 0.16_{lum} \ nb$

- Clean hadronic W -> τ decays
- Baseline analysis for new physics searches involving τ

T Universality

$$g_{\tau}/g_{e} = 0.99 \pm 0.02$$
stat ± 0.04 sys

- Uncertainties due to τ acceptance, efficiency, energy calibration and backgrounds contribute about equally.
- Uncertainties mostly uncorrelated between CDF and D0.

W and Z Cross Sections Summary

• Run 2 measurements consistent with predictions

W and Z Cross Sections Summary

$Br(W \longrightarrow l \ v) \ and \ \Gamma(W)$

$$R = \frac{\sigma(W) \cdot Br(W \to l \nu)}{\sigma(Z) \cdot Br(Z \to l l)}$$

• Dominant systematics due to detector modelling and backgrounds

$$R_e = 9.88 \pm 0.24$$
 stat ± 0.47 sys

$$R\mu = 10.69 \pm 0.27$$
stat ± 0.33 sys

Run 1 CDF/D0 combined:

$$R = 10.59 \pm 0.20$$
uncorr ± 0.11 corr

• Extract $\Gamma(W)$ using SM $\Gamma(W \rightarrow \ell \nu)$

Dielectron Forward-Backward Asymmetry

- Off-pole, high mass A_{FB} unique to Tevatron
- Sensitive to new physics @ 1st order in amplitude, through interference

Exploit forward coverage

Dielectron Forward-Backward Asymmetry

Run 2 measurement consistent with SM prediction, statistics-limited at high mass

Dilepton mass distributions consistent 10. with standard model

• Higher c.m.s. energy increases sensitivity

Ldt = 72 pb ⁻¹

250

	CDF	D0	CDF
	е	е	μ
Run 2	650	620	455
Run 1	640	670	575

$W\gamma \longrightarrow \mu \nu \gamma$

• 38 events observed, with signal expectation of $25.5 \pm 0.6_{stat} \pm 2.3_{sys}$ and estimated background of $11.0 \pm 0.4_{stat} \pm 1.7_{sys}$

$$\sigma.B(W\gamma \to \mu\nu\gamma) = 19.8 \pm 4.5_{stat} \pm 2.4_{sys} \pm 1.2_{lum} \ pb$$

$W\gamma \longrightarrow e \nu\gamma$

 \bullet 43 events observed, with signal expectation of $32.2 \pm 1.3_{stat} \pm 2.5_{sys}$ and estimated background of $14.4 \pm 0.4_{stat} \pm 3.8_{sys}$

$$\sigma.B(W\gamma \rightarrow e\nu\gamma) = 17.2 \pm 3.8_{stat} \pm 2.8_{sys} \pm 1.0_{lum} \ pb$$

Search for WW Production

- Establish SM WW/WZ signals as precursor to SM Higgs search
- **○** CDF Run 2: dilepton + $\cancel{\mathbb{E}}_T$ signature yields 2 candidates; expected signal of 2.79 ± 0.62 events and background of 1.53 ± 0.64 events
- Combined D0 Run 1 95% CL limits from all WWV channels ($\Lambda = 2 \text{ TeV}$):

$$-0.25 < \Delta k < 0.39 \ (\lambda = 0)$$

$$-0.18 < \lambda < 0.19 \ (\Delta k = 0)$$

Run 1 results from fits to transverse mass and lepton p_T distributions:

•	CDF	D0
M _W	80.433 ± 0.079 GeV	80.483 ± 0.084 GeV
Γ_{W}	2.05 ± 0.13 GeV	2.231 ^{+0.175} _{-0.170} GeV

- Tevatron (CDF & D0) averages:
 - $M_W = 80.456 \pm 0.059 \text{ GeV}$ (19 MeV correlated uncertainty)
 - $\Gamma_{W} = 2.115 \pm 0.105 \text{ GeV}$ (26 MeV correlated uncertainty)
 - correlation due to PDFs, QED radiative corrections and W width/mass inputs
- Joint M_W - Γ_W combination (no external mass or width information):
 - $M_W = 80.452 \pm 0.059 \text{ GeV}$
 - $\Gamma_{\rm W} = 2.102 \pm 0.106 \, {\rm GeV}$
 - correlation coefficient = -0.17
- $\Gamma(W->\ell v) = \Gamma_W$. Br $(W->\ell v) = 224 \pm 13$ MeV (SM: $\Gamma(W->\ell v) = 227.1 \pm 0.6$ MeV)

 \bullet Γ_{W} is consistent with SM

• M_W is ~1.8 σ high relative to SM, favors low Higgs mass

Higgs Constraint

- Current SM Higgs fit: $m_H = 81^{+51}_{-33}$ GeV ($\triangle log(mH/GeV) = 0.23$) (hep-ex/0212036)
- Assuming Run 2A
 (2/fb/expt) yields
 ΔM_W = 40 MeV
 ΔM_{top} = 3 GeV
 per experiment, and
 ΔM_W = 30 MeV
 ΔM_{top} = 2.5 GeV
 combined
- Expect $\Delta \log(mH/GeV)=0.15$ $(\Delta m_{top} \text{ and } \Delta \alpha(M_Z) \text{ contribute}$ equivalent $\Delta M_W=15 \text{ MeV} \text{ each})$

$Sin^2 \theta_W$ from NuTeV

- Using sign-selected neutrino beam for vN scattering, NuTeV measured $sin^2\theta_W = 0.2277 \pm 0.0013_{stat} \pm 0.0009_{syst}$ with small residual dependence on M_{top} and M_H (G. P. Zeller et al, PRL 88, 091802)
- Approx. 3σ different from SM fit: $\sin^2\theta_W = 0.2227 \pm 0.0004$
- Possible SM explanations:
 - isospin violation in nucleon
 - asymmetric strange sea
 - nuclear shadowing effects
 - NLO QCD effects

$Sin^2\theta_W$ from NuTeV

- NuTeV analyses of their data for possible SM explanations (hep-ex/0205080, hep-ex/0203004 and references therein) do not support these hypotheses:
 - dimuon data exclude strange sea asymmetry as cause
 - estimates of isospin-breaking and NLO QCD too small
 - nuclear shadowing disfavored by separate neutrino, antineutrino measurements and high Q² of data
- Non-SM hypotheses:
 - new contact interaction ($\Lambda \sim 4 \text{ TeV}$)
 - extra U(1) gauge boson ($M_{Z'} \sim 1 1.5 \text{ TeV}$)
- Tevatron Run 2 sensitivity in related channels extends to these energies: may lead to interesting manifestations

Future Tevatron Prospects

- Scaling of ΔM_W and $\Delta \Gamma_W$ errors with integrated luminosity:
 - during 1987-1995 running period, integrated luminosity per collider experiment increased from 4 pb⁻¹ → 20 pb⁻¹ → 110 pb⁻¹
 - ΔM_W reduced correspondingly from ~400 MeV → 150 MeV → 60 MeV, following $1/\sqrt{L}$ scaling
 - systematics constrained with collider data, e.g. exploiting forward coverage to constrain PDF uncertainty
 - continuation of this trend could lead to $\Delta M_W \sim 15$ MeV, $\Delta \Gamma_W \sim 25$ MeV with 2 fb⁻¹

Future Prospects

- Precision measurement of Br (W $\rightarrow \ell \nu$):
 - dominant experimental systematics in ratio of W and Z cross sections acceptance ratio, detector response, backgrounds can be constrained with collider data
 - total fractional uncertainty O(1%) may be achieved (Run 1 fractional uncertainty due to electroweak radiative corrections was 1%)
 - combining Γ_W and Br (W $\rightarrow \ell \nu$), $\Gamma(W \rightarrow \ell \nu)$ may be measured with a precision of a few %

Future Prospects

- Electroweak physics at high mass:
 - diboson production (sensitive to anomalous couplings and form factor scale Λ)
 - Drell-Yan $(\gamma/Z/W)$ cross sections and asymmetries

extend sensitivity to new physics to energies approaching 1 TeV

Precise measurements of differential cross sections (boson p_T, rapidity and polarization) provide unique information on W and Z production dynamics

Summary

- Very successful electroweak physics program at the Tevatron Run 1 is complete
- Run 2 is well underway already producing electroweak physics results of comparable precision to Run 1
- No show-stoppers on the way to exploiting 2 fb⁻¹ (and more!) of Run 2 data